Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 1000+ Conferences, 1000+ Symposiums and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series Ltd: World’s leading Event Organizer


Wenjie Dong

Wenjie Dong

Sun Yat-sen University, China

Title: A Brief Introduction to BNU-HESM1.0 and Its Earth Surface


Professor and Dean of School of Atmospheric Science, Sun Yat-senUniversity, China. Served as Director-General, National Climate Center, China Meteorological Administration during 2003-2008; as  aMember of Scientific Planning Groupfor China of Asia-Pacific Network for Global Change Research since 2006; as a member of Scientific Steering Committee of CLIVAR/WCRP during 2007-2011; as Chairmen of GEWEX-CNC since 2005; as the lead author of WGI of IPCC AR5 since 2010 and the P.I. of the project “Multi-model ensemble projection and attribution of climate change based on CMIP5”. Research interests: climate change, climate dynamics and climate prediction, land-atmosphere interactions, regional and global climate modeling, flood and drought, monsoon dynamics, orderly human activity and living environment. Published 130 papers and 5 books.


Integrated assessment models and coupled earth system models both have their limitations in understanding the interactionsbetween human activity and the physical earth system. In this paper, a new human–earth system model, BNUHESM1.0,constructed by combining the economic and climate damage components of the Dynamic Integrated Model ofClimate Change and Economy to the BNU-ESM model, is introduced. The ability of BNU-HESM1.0 in simulating theglobal CO2 concentration and surface temperature is also evaluated. We find that, compared to observation, BNU-HESM1.0underestimates the global CO2 concentration and its rising trend during 1965–2005, due to the uncertainty in the economiccomponents. However, the surface temperature simulated by BNU-HESM1.0 is much closer to observation, resulting fromthe overestimates of surface temperature by the original BNU-ESM model. The uncertainty of BNU-ESM falls within therange of present earth system uncertainty, so it is the economic and climate damage component of BNU-HESM1.0 that needsto be improved through further study. However, the main purpose of this paper is to introduce a new approach to investigatethe complex relationship between human activity and the earth system. It is hoped that it will inspire further ideas that provevaluable in guiding human activities appropriate for a sustainable future climate