Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 1000+ Conferences, 1000+ Symposiums and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series Ltd: World’s leading Event Organizer


Alex Ellery

Alex Ellery

Carleton University, Canada

Title: Climate change mitigation at low cost through disruptive technology – Selfreplicating machines to build solar power satellites and space- based solar shields


Prof Alex Ellery is a Canada Research Chair in Space Robotics & Space Technology at the Mechanical & Aerospace Engineering Department of Carleton University, Ottawa, Canada. He has a BSc in Physics, an MSc in Astronomy and a PhD in Astronautics & Space Engineering from the UK and is a graduate of the International Space University. He was awarded the George Stephenson medal by the IMechE in 2005 and delivered a prize winning paper at the World Energy Congress Istanbul in 2016 His expertise is in the application of robotics and artificial intelligence to space exploration including the exploitation of planetary in-situ resources and the application of 3D printing technology to extraterrestrial material. His goal is to develop this state-of-the-art technology to realise self-replicating machines on the Moon in order to implement innovative global climate change mitigation solutions.


Effects of climate change are increasing year-on-year, yet greenhouse emissions from fossil fuel combustion continue to accumulate in the atmosphere. Furthermore, there is natural inertia in the climatic system that dictates that the full effects of current greenhouse gases have yet to be realized. Renewable energy sources, although growing in their deployment, have capacity limits in an increasingly energy-hungry world, particularly with regard to supplying baseload power. There are thus two aspects to our current geophysiological ailment – aetiology (fossil fuel combustion) and symptoms (temperature). These problems can be solved by implementing: (i) solar power satellites (SPS) to supply solar energy to Earth at 230 W/m2 from space 24 x 7 (antibiotic), and (ii) space solar shields (SSS) emplaced at the Sun-Earth L1 libration point to reduce solar flux to Earth by 1.8% (analgesic). The chief hindrance has been technological capabilities and the astronomical cost imposed by launch from Earth at $20,000/kg. Both problems can be alleviated through self-replication technology, an emerging capability based on robotic machines that can extract raw materials, process it and manufacture it into copies of its own parts. It has been determined that extraction of lunar materials required for building robotic machines is feasible. Furthermore, 3D printing of metals, plastics and ceramics has been developing rapidly. We have been developing technology for 3D printing electric motors and neural network-based circuitry from lunar material as the core components of a self-replicating machine and, indeed, any robot machine. From such universal constructing machines on the Moon, SPS and SSS can be manufactured in vast numbers enabled through self-replication. SPS in conjunction with SSS offer the most effective and robust solution to climate change. The high cost problem may be effectively eliminated in comparison with alternatives through the use of self-replicating machines – such machines are viable and imminent.