Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 1000+ Conferences, 1000+ Symposiums and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series Ltd: World’s leading Event Organizer



Agustín J. Colussi, a Research Professor at CALTECH since 1998, has published more than 200 papers in environmental physical chemistry.


The oxidation of biogenic dimethyl sulfide (DMS) emissions is a global source of cloud condensation nuclei. The amounts of the nucleating H2SO4(g) species produced in such process, however, remain uncertain. Hydrophobic DMS is mostly oxidized in the gas-phase into H2SO4(g) + DMSO(g) (dimethyl sulfoxide), whereas water-soluble DMSO is oxidized into H2SO4(g) in the gas-phase but into SO42- + MeSO3- (methane sulfonate) on water surfaces. Thus, R = MeSO3-/non- sea-salt-SO42- ratios would therefore gauge both the strength of DMS sources and the extent of DMSO heterogeneous oxidation if Rhet = MeSO3-/SO42- for DMSO(aq) + ·OH(g) were known. Here we report that Rhet  = 2.7, a value obtained from online electrospray mass spectra of DMSO(aq) +

·OH(g) reaction products, which quantifies the MeSO3- produced in DMSO heterogeneous  oxidation on aqueous aerosols for the first time. On this basis, the inverse R-dependence on particle radius in size-segregated aerosol collected over Syowa station and Southern oceans is shown to be consistent with the competition between DMSO gas-phase oxidation and its mass accommodation followed by oxidation on aqueous droplets. Geographical R variations are thus associated with variable contributions of the heterogeneous pathway to DMSO atmospheric oxidation, which increase with the specific surface area of local aerosols.