Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 1000+ Conferences, 1000+ Symposiums and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series Ltd: World’s leading Event Organizer

Back

Youmin Chen

Youmin Chen

Henan University, China

Title: Using WRF model to simulate how the global warminginfluences the extreme storm

Biography

Youmin Chen has many work experiences as in the list below, and most of his duties in the work are in the technical aspects, such as database manager, scientific programmer. Therefore, he has a quite broad work area in the aspects of earth sciences such as WRF modeling and the CORDEX work; statistical downscaling (CCA, REOF, step-wise regression etc.); expanded downscaling and hydrological modeling; carbon cycle (in Max-Planck institute for Biogeochemistry); as well as weather generator (stochastic modeling with Monte Carlo method, QuantileMapping method) and so on. He is always trying to develop the technical work as good as possible. For instance, he was doing the CORDEX task in Bjerknes Center for Climate Research (Norway), and developed a series of scripts for WRF modeling and post-processing, so the CORDEX task could be rather easily carried out.

Abstract

Using the WRF model, which is developed at the National Center of Atmospheric Research (NCAR) in USA, we simulated an extreme storm event occurred in China in August 1975, a well-known event called the 758-storm. The reanalysis data, ERA40, from Europe Center for Medium Weather Forecast (ECMWF) was employed as the WRF’s boundary. The spatial resolution at the center of the simulated storm is set to be 2000 meter, which is realized by means of the nested domain in the study area. The simulation time step is set to be 60 minutes, corresponding to the 2000 meter spatial resolution. There are 60 layers in the sigma coordinate at the vertical direction and the top level pressure is defined as 50hPa. We first simulated 3-dimension structure of the 758-storm, which is used to analyze the development and mechanism of the storm event. Afterwards, an extra simulation experiment focusing on the 758-storm was carried out,i.e. through increasing the temperature variables by 2℃for the WRF simulation we explored how the climate warming influences the future storm events. In addition, We also generated a set of downscaled data based on CORDEXstandard for East Asia area and these CORDEX data was used to express the 758-storm, which shows significant difference with the simulation of 758-storm as above. Finally we concluded that the spatial resolution is very important for better simulation of extreme storm.